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SUMMARY

In this paper, explicit boundary-domain integral equations for evaluating velocity gradients are derived
from the basic velocity integral equations. A free term is produced in the new strongly singular integral
equation, which is not included in recent formulations using the complex variable differentiation method
(CVDM) to compute velocity gradients (Int. J. Numer. Meth. Fluids 2004; 45:463–484; Int. J. Numer. Meth.
Fluids 2005; 47:19–43). The strongly singular domain integrals involved in the new integral equations
are accurately evaluated using the radial integration method (RIM). Considerable computational time for
evaluating integrals of velocity gradients can be saved by using present formulation than using CVDM.
The formulation derived in this paper together with those presented in reference (Int. J. Numer. Meth.
Fluids 2004; 45:463–484) for 2D and in (Int. J. Numer. Meth. Fluids 2005; 47:19–43) for 3D problems
constitutes a complete boundary-domain integral equation system for solving full Navier–Stokes equations
using primitive variables. Three numerical examples for steady incompressible viscous flow are given to
validate the derived formulations. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last few decades, significant developments have been made in numerical analysis of viscous
fluid flows using the boundary element method (BEM) [1–11]. The distinct advantages of BEM over
other numerical methods such as the finite difference method (FDM), finite volume method (FVM)
and finite element method (FEM) can be identified as follows: (1) the velocity gradient formulation
can be explicitly derived from the velocity integral equation. Therefore, the computational accuracy
of the velocity gradient is as high as that of the velocity itself (e.g. [1, 2]). However, in other
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methods such as the ones mentioned above, the accuracy of the velocity gradient is usually one
order lower than that of the velocity itself; (2) the boundary conditions at the infinite distance are
automatically satisfied in BEM formulations and, consequently, make BEM inherently suitable for
solving aerodynamic problems.

Earlier works using the boundary integral equation approach to solve fluid flow problems may
be traced back to the work of Wu [3] by partitioning the mass and momentum conservation
equations into kinematic and kinetic parts. Several numerical schemes were developed from the
stream function–vorticity formulation of Onishi et al. [4], velocity–vorticity formulation of Skerget
et al. [5] and Ramsak and Skerget [6], penalty formulation of Grigoriev and Fafurin [7].

The work using primitive variables to solve two-dimensional (2D) viscous flow problems was
carried out by Florez and Power [8]. Honkala and Banerjee utilized a different type of fundamental
solution to solve thermoviscous flow problems [9]. Further developments can be found in the works
by Sarler and Kuhn [10], and Power and Mingo [11].

The conventional BEM algorithm results in a fully populated coefficient matrix for the system
of equations which is very time consuming to solve. In view of this, some new approaches
have been developed, such as the meshless local boundary integral equation method [12, 13]
and the mesh-based localized boundary-domain integral equation method [14]. In these methods,
special fundamental solutions are constructed, which take effect within a localized region for each
collocation point. Since a sparse system of equations can be obtained by using these methods, they
are competitive with the FEM in solving the system of algebraic equations.

Recently, Gao developed a general boundary-domain integral equation approach using primitive
variables for solving 2D [1] and 3D [2] full Navier–Stokes equations based on a reciprocal theorem
for Newtonian flows. This approach results in integral equations expressed in terms of velocity,
traction and pressure, and are valid for steady, unsteady, compressible and incompressible flows.
In this approach, no velocity gradients appear in the integral equations and, through incorporating
the divergence of velocity in the continuity equation, the pressure term can be explicitly eliminated
from the final system of equations.

In the former works [1, 2] mentioned, in order to avoid the evaluation of strongly singular domain
integrals, the divergence of velocity is computed using the complex variable differentiation method
(CVDM) [15], which was introduced in BEM for the first time by Gao et al. [16]. Although no
strongly singular domain integrals need to be performed in the use of CVDM, much computational
time is consumed in the computation of velocity gradients since related weakly singular domain
integrals need to be evaluated twice for 2D and thrice for 3D problems. Besides, related variables
need to be declared as the complex kind, which doubles the memory storage.

This paper presents an explicit integral equation for computing velocity gradients, which is
manipulated in the real number space, and therefore can save considerable computational time
compared to the use of CVDM. Since the derived boundary-domain integral equations for the
velocity gradient include strongly singular domain integrals, a free term will be produced in the es-
tablishment of domain integrals when interpreted in the Cauchy principal value sense. The strongly
singular domain integrals will be accurately evaluated through a singularity separation technique,
in which the radial integration method (RIM) [17] is used to remove the strong singularity. In
Section 2, the basic boundary-domain integral equations for velocity developed in [1, 2] will be
reviewed. The correspondence of the related fundamental solutions to those used in elasticity BEM
is also discussed in this section. Full formulations for the velocity gradient will be presented in
Section 3 and reduced to the pressure computation equation in Section 4. Section 5 will present
regularized formulations for evaluating strongly singular domain integrals included in the velocity
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gradient integral equations. A brief description of the numerical implementation of the derived
formulations will be given in Section 6 and three numerical examples will be reported in
Section 7 to demonstrate the correctness of the derived formulations, following which is a con-
cluding remark.

2. VELOCITY BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR VISCOUS FLOWS

In viscous fluid mechanics, the governing equations can be written as [18]
Continuity equation:

��

�t
+ ��ui

�xi
= 0 (1)

Momentum equations:

��ui
�t

+ ��uiu j

�x j
= ��i j

�x j
+ �bi (2)

where t is the time, � the fluid density, and ui the i th velocity component, b j the body force
per unit mass (e.g. the gravity force) and � jk the stress tensor, and repeated subscripts stand for
summation. For Newtonian fluids, the constitutive relationship between the stresses and velocities
based on Stokes’ hypothesis can be expressed as

�i j = −p�i j + �

(
�ui
�x j

+ �u j

�xi

)
− 2

3
�

�uk
�xk

�i j (3)

where p=−�i i/3 is the pressure, �i j the Kronecker delta function, � the viscosity (constant here).
On the fluid boundary with outward normal ni , the relationship between the stress and traction

ti (force per unit area) can be expressed as

ti = �i j n j (4)

From these equations, the reciprocal work theorem for viscous fluid flow can be derived [1]
and, based on this theorem, a boundary-domain integral equation for 2D and 3D can be derived
as follows [1, 2]:

ui (x) =
∫

�
u∗
i j (x, y)t j (y) d�(y) −

∫
�
t∗i j (x, y)u j (y) d�(y)

−
∫

�
u∗
i j (x, y)nk(y)�(y)u j (y)uk(y) d�(y)

+
∫

�
u∗
i j,k(x, y)�(y)u j (y)uk(y) d�(y)

+
∫

�
u∗
i j (x, y)�(y)b j (y) d�(y) −

∫
�
u∗
i j (x, y)

��u j

�t
d�(y)

+
∫

�
u∗
i j, j (x, y)p(y) d�(y) (5)
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where � is the boundary of the problem domain �, x denotes the source point and y the field point,
(∗),i = �(∗)/�yi . Fundamental solutions appearing in the above equation can be expressed as

u∗
i j (x, y)=

⎧⎪⎪⎨
⎪⎪⎩

1

16���

{
7�i j ln

(
1

r

)
+ r,i r, j

}
for 2D (� = 2)

1

16���r
{7�i j + r,i r, j } for 3D (� = 3)

(6)

t∗i j (x, y)= −1

8��r� {3(nir, j −n jr,i ) + (�r,i r, j +3�i j )nkr,k } (7)

u∗
i j,k(x, y)= −1

16���r� {7�i j r,k −�ikr, j −� jkr,i +�r,i r, j r,k } (8)

u∗
i j, j =

−3r,i
8���r� (9)

where � = � − 1 with �= 2 for 2D and �= 3 for 3D problems, r is the distance between points x
and y, i.e. r =‖y − x‖, and

r,i = �r
�yi

= yi − xi
r

(10)

Equation (5) is a general boundary-domain integral equation valid for steady, unsteady, com-
pressible and incompressible flows. Comparing u∗

i j (x, y) and t∗i j (x, y) to those used in elasticity
BEM [19] shows that the fundamental solutions in the viscous flows correspond to those of
elasticity BEM through replacing the shear modulus G and Poisson’s ratio � in elasticity BEM
using the viscosity � and −1 in viscous flows, respectively.

It is noted that Equation (5) is only valid for internal source points. For boundary source points,
a limiting process needs to be performed and the ‘rigid body motion’ condition may be applied to
determine the strongly singular boundary integrals, as done in the conventional BEM [19, 20].

From Equation (5) it can be seen that except for the traction ti and velocity ui , the pressure p
appears in the integral equation. To solve these quantities, continuity equation (1) is required to
close the equation system and thereby the divergence of velocity �ui (x)/�xi needs to be evaluated.
For the general purpose, the velocity gradient expression will be derived in the next section and
then the divergence of velocity will be formed by incorporating indices.

3. VELOCITY GRADIENT BOUNDARY-DOMAIN INTEGRAL EQUATIONS
FOR VISCOUS FLOWS

Differentiating Equation (5) with respect to the source point x yields

�ui (x)
�xl

=
∫

�

�u∗
i j (x, y)

�xl
t j (y) d�(y) −

∫
�

�t∗i j (x, y)
�xl

u j (y) d�(y)

−
∫

�

�u∗
i j (x, y)

�xl
nk(y)�(y)u j (y)uk(y) d�(y)
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Figure 1. A small domain �	 cut out from �.

+
∫

�

�u∗
i j (x, y)

�xl
�(y)b j (y) d�(y) −

∫
�

�u∗
i j (x, y)

�xl

��u j

�t
d�(y)

+
∫

�

�u∗
i j, j (x, y)

�xl
p(y) d�(y) +

∫
�

�u∗
i j,k(x, y)

�xl
�(y)u j (y)uk(y) d�(y) (11)

All domain integrals included in the above equation are interpreted in the Cauchy principal value
sense except for the last two terms, which result in strongly singular kernels after differentiation
and for which special treatments need to be carried out. To do this, let us cut out a small spherical
domain �	 from domain � with radius 	 centred at point x (Figure 1).

Noticing that �( )/�xi = − �( )/�yi = − ( ),i , the last integral of Equation (11) can be written
as

∫
�

�u∗
i j,k(x, y)

�xl
�(y)u j (y)uk(y) d�(y) = − lim

	→0

∫
�−�	

u∗
i j,kl(x, y)�(y)u j (y)uk(y) d�(y)

− �(x)u j (x)uk(x) lim
	→0

∫
�	

�u∗
i j,k(x, y)

�xl
d�(y)

= −
∫

�
u∗
i j,kl(x, y)�(y)u j (y)uk(y) d�(y)

− �(x)u j (x)uk(x) lim
	→0

∫
�	

u∗
i j,k(x, y)nl d�(y) (12)

where �	 is the spherical surface of the domain �	.
Now the domain integral on the right-hand side of Equation (12) is interpreted in the Cauchy

principal value sense and the last surface integral in Equation (12) can be easily integrated using
Equation (8) as∫

�	

u∗
i j,k(x, y)nl d�(y)= 1

8�
�
{−(� + 7
)�i j�kl + 2(�ik� jl + � jk�il)} (13)

where 
 = �+2. Equation (13) gives the coefficient of the free term for the domain integral shown
in Equation (12). In a similar manner, the domain integral including pressure p in Equation (11)
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can be derived as∫
�

�u∗
i j, j (x, y)

�xl
p(y) d�(y)= −

∫
�
u∗
i j, jl(x, y)p(y) d�(y) + 3

4��
�il p(x) (14)

Substituting Equations (12)–(14) into Equation (11), one can obtain the velocity gradient boundary-
domain integral equation as

�ui (x)
�xl

= −
∫

�
u∗
i j,l(x, y)t j (y) d�(y) +

∫
�
t∗i j,l(x, y)u j (y) d�(y)

+
∫

�
u∗
i j,l(x, y)nk(y)�(y)u j (y)uk(y) d�(y)

−
∫

�
u∗
i j,l(x, y)�(y)b j (y) d�(y) +

∫
�
u∗
i j,l(x, y)

��u j

�t
d�(y)

−
∫

�
u∗
i j,kl(x, y)�(y)u j (y)uk(y) d�(y) −

∫
�
u∗
i j, jl(x, y)p(y) d�(y)

+ 1

8�
�
{(�+7
)�i j�kl−2(�ik� jl+� jk�il)}�(x)u j (x)uk(x)+ 3

4��
�il p(x) (15)

in which the used fundamental solutions are

t∗i j,l =
−1

8��r�
{3(ni� jl + nl�i j − n j�il) + �[3 (n jr,i −nir, j )r,l +nlr,i r, j ]

+ �r,m nm[�ilr, j +� jlr,i −3�i j r,l −
r,i r, j r,l ]} (16)

u∗
i j,kl(x, y) = 1

16���r�
{�il� jk + �ik� jl − 7�i j�kl − �(�ikr, j r,l +� jkr,i r,l −7�i j r,k r,l

+ � jlr,i r,k +�klr,i r, j +�ilr, j r,k ) + �
r,i r, j r,k r,l } (17)

u∗
i j, jl =

−3

8���r�
{�il − �r,i r,l } (18)

All integrals included in Equation (15) are interpreted in the Cauchy principal value sense. The last
two terms in Equation (15) are the free terms of the velocity gradient integral equation since they
are only dependent on the source point coordinates. It is noted that, in this study, Equation (15) is
only used for internal source points. For boundary points, since the kernel t∗i j,l is hyper-singular
when the source point x approaches the field point y, directly evaluating its boundary integral
may give rise to the numerical overflow problem. Therefore, for boundary points, the velocity
gradients are computed using the traction–recovery technique as done in References [1, 2, 20]. On
the other hand, even for internal points, the domain integrals with kernels u∗

i j,kl and u∗
i j, jl are

strongly singular. Therefore, special treatments are needed. This will be described later in detail.
The velocity gradients play a very important role in the evaluation of the dissipation function

involved in the energy equation and will be described in another paper. Besides, the velocity
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gradient equation (15) is also utilized to compute the divergence of velocity, which is used in the
continuity equation to produce the pressure integral equation. This will be described in the next
section.

4. PRESSURE EQUATIONS BASED ON CONTINUITY EQUATION

The continuity equation (1) can be written as

��

�t
+ ui

��

�xi
+ �

�ui
�xi

= 0 (19)

In order to use this equation, the divergence of velocity, �ui/�xi , needs to be determined. From
Equation (15) and noticing that u∗

i j, j i = 0, it follows that

�ui
�xi

= −
∫

�
u∗
i j,i (x, y)t j (y) d�(y) +

∫
�
t∗i j,i (x, y)u j (y) d�(y)

+
∫

�
u∗
i j,i (x, y)nk(y)�(y)u j (y)uk(y) d�(y) −

∫
�
u∗
i j,ki (x, y)�(y)u j (y)uk(y) d�(y)

−
∫

�
u∗
i j,i (x, y)�(y)b j (y) d�(y) +

∫
�
u∗
i j,i (x, y)

��u j

�t
d�(y)

+ 3

4��
�(x)ui (x)ui (x) + 3

4�
p(x) (20)

where

t∗i j,i =
−3

4��r�
{� jl − �r, j r,l }nl (21)

u∗
i j,ki = u∗

j i,ik = −3

8���r�
{� jk − �r, j r,k } (22)

From Equation (20) it can be seen that apart from the free term of p (the last term), no pressure
is included in the integrals of Equation (20). Therefore, on substituting Equation (20) into the
continuity equation (19), one can obtain the integral equation to compute the pressure p.

It is noted that due to the hyper-singular boundary integral problem, Equation (20) can only
be applied to internal points. For boundary points, the traction–recovery method is used and the
related formulations have been presented in [2].

5. ACCURATE EVALUATION OF STRONGLY SINGULAR DOMAIN INTEGRALS

The domain integrals included in Equation (15) with kernels u∗
i j,kl and u∗

i j, jl , and in Equation
(20) with kernel u∗

i j,ki are strongly singular when the source point x tends to the field point y.
The singularity separation technique [20] is applied to evaluate these integrals. The essence of the
technique is the isolation of the singularity and its transformation into a (local) boundary integral.
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Here, only the domain integral with kernel u∗
i j,kl is described. Other domain integrals can be done

in a straightforward manner.
The domain integrals included in Equation (15) with kernels u∗

i j,kl can be isolated by re-writing
the integral in the form∫

�
u∗
i j,kl(x, y)�(y)u j (y)uk(y) d�(y) =

∫
�
u∗
i j,kl(x, y){�(y)u j (y)uk(y)−�(x)u j (x)uk(x)} d�(y)

+ �(x)u j (x)uk(x)
∫

�
u∗
i j,kl(x, y) d�(y) (23)

Now, the first integral on the right-hand side is weakly singular and can be integrated numerically
through the cell-subdivision technique [20]. The strong singularity has been transferred to the last
integral, which can be dealt with using the RIM [17]. Since the kernel u∗

i j,kl (see Equation (17))
satisfies the integration condition presented in [17], the last domain integral of Equation (23) can
be easily transformed into a boundary integral by RIM as follows:

∫
�
u∗
i j,kl(x, y) d�(y)=

∫
�
u∗
i j,kl(x, y)r log(r)

�r
�n

d�(y) (24)

Now, because the integration is performed through the boundary of the problem, no singularities
occur since the source point is located at an internal point. Since Equation (24) is valid for
any closed boundary surrounding the source point x , in a numerical implementation, the integral
boundary is usually taken as the outer surfaces of the cells surrounding the source point x as done
in [20]. This can save considerable computational time.

6. NUMERICAL IMPLEMENTATION FORMULATIONS FOR
STEADY INCOMPRESSIBLE FLOWS

Equations (5), (15) and (20) are general integral equations for viscous flows. The numerical
implementation of these equations is exactly the same as in the use of CVDM. For further details,
one can refer [1, 2]. It should be pointed out that the pressures appearing in the discretized algebraic
equations from Equation (5) can be eliminated by using Equations (19) and (20), such that the
final system of equations for incompressible flows only contains the velocities and/or tractions
as unknowns. Another feature of the present approach is that the velocities explicitly appear in
the system of equations with the maximum order of velocity being quadratic. Therefore, the first
and second derivatives of the system of equations with respect to velocities can be easily derived
and therefore advanced non-linear equation solvers can be directly used to solve the system of
equations. The program HYBRJ [21] using the modified Powell hybrid algorithm is adopted in
this study, which is able to achieve a very fast convergence in the iteration computation [1, 2].

7. NUMERICAL EXAMPLES

To validate the formulations derived in this paper, three numerical examples for steady incom-
pressible flows are presented in this section. The first two examples are from References [1] for

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1351–1368
DOI: 10.1002/fld



EXPLICIT FORMULATIONS FOR EVALUATION OF VELOCITY GRADIENTS 1359
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Figure 2. Geometry and boundary conditions for driven cavity flow.

2D and [2] for 3D problems, respectively, with comparisons to the CVDM results, and the third
one is a new example with the comparison with ANSYS CFD results.

7.1. Driven flow in an unitary square cavity

The first numerical example concerned is a unitary square cavity (Figure 2). The top side moves
with a uniform velocity of 1 unit in the horizontal direction, while the left, right and bottom sides
are fixed, including the two corners of the top side. Ghia et al. [22] provided a benchmark solution
that is used in this example for comparison. Each side of the cavity is discretized into 40 equally
spaced linear boundary elements with a total of 160 elements and 160 boundary nodes. The domain
of the cavity is approximated with 1600 linear quadrilateral cells with 1521 internal nodes.

The Reynolds number is defined as Re= �UH/�, where U is the characteristic velocity and
H the characteristic length. In this example, the parameters are set as � = 100, U = 1, H = 1,
and �= 1. This implies that Re= 100. Figure 3 shows the computed horizontal velocities on the
vertical centreline of the cavity and Figure 4 depicts the vertical velocity profile on the horizontal
centre line. Figure 5 gives the velocity vector plot. The computed vortex centre is (0.6112, 0.7351),
which is close to the result (0.6172, 0.7344) by Ghia et al. [22].

Comparison of the current results with those of CVDM [1] and benchmark solutions [22]
(see Figures 3 and 4) shows that the formulations derived in this paper are correct. The current
results are so close to those of CVDM that it is very difficult to identify their discrepancy visually.

7.2. Curved pipe flow

The second example deals with the fluid flowing through a 3D curved circular pipe with radius
r = 1 (Figure 6). The curvature of the pipe is determined by a radius of R = 9. The fluid with
the property of �= 1 and �= 1 is subjected to a vertical body force of bz = − 10 and a pressure
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Figure 3. Horizontal velocity profile on vertical centreline.
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Figure 4. Vertical velocity profile on horizontal centreline.

P = 50 on the top surface. Due to symmetry about the x–z plane, only half of the model is
used in computation. The discretized half pipe consists of 672 linear boundary elements with
719 boundary nodes and 2880 linear cells with 2784 internal nodes. The boundary conditions are
tx = ty = 0, tz = − 50 on the upper end, tx = ty = tz = 0 on the lower end and ux = uy = uz = 0
on the side surface.

Figure 7 is the plot of computed velocity vector for different cross-sections over the vertical
central plane y = 0, where the velocity vector is scaled by multiplying by a factor of 0.3. Figure 8
is the contour plot of pressure over the vertical central plane. Table I lists the results at positions of
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Figure 5. Velocity vector plot.
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Figure 6. BEM model of the curved pipe.

maximum velocity over the different sections numbered in Figure 7. For comparison, the results
obtained using CVDM [2] are also given.

From Table I, it can be seen that the velocities and pressures computed using CVDM [2] and the
current formulations at the 31 cross-sections are in very good agreement. This indicates again that
the derived formulations in this paper are correct. Close inspection of pressure values in Table I
reveals that the pressure over the top surface (section 31) is not equal to the applied normal force
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Figure 7. Scaled velocity vector plot for different sections over vertical central plane.
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Figure 8. Contour plot of pressure over the vertical central plane.

P = 50. This is because the tangential velocities ux and uy are not zero on the top surface and
therefore the computed pressure using p= −�i i/3 is not equal to the normal traction tz = −50 (see
Equation (4)). However, if the tangential velocities are constrained on the top surface, computed
pressure will be equal to the normal traction. Interested people can find detailed information about
this phenomenon in Reference [2].
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Table I. Velocities and pressures at maximum velocity position of each section over the vertical central
plane y = 0 (see Figure 7).

|u| |u| p p
Section X z (Current) (CVDM) (Current) (CVDM)

1 10.000 −10.250 2.0613 2.0644 −1.6257 −1.6262
3 8.8179 −9.8488 1.6212 1.6208 9.1001 9.1021
5 7.7094 −9.6240 1.8629 1.8627 16.0381 16.0389
7 6.6745 −9.3255 1.9856 1.9851 22.1191 22.1204
9 5.7133 −8.9534 2.0780 2.0778 27.2857 27.2860

11 4.8257 −8.5076 2.1621 2.1619 31.5643 31.5646
13 4.0118 −7.9882 2.2451 2.2453 35.0274 35.0271
15 3.2715 −7.3952 2.3325 2.3326 37.7732 37.7730
17 2.6048 −6.7285 2.4261 2.4259 39.9217 39.9218
19 2.0118 −5.9882 2.5266 2.5265 41.6025 41.6027
21 1.4924 −5.1743 2.6372 2.6370 42.9403 42.9407
23 1.0466 −4.2867 2.7608 2.7611 44.0435 44.0433
25 0.6745 −3.3255 2.9132 2.9137 44.9650 44.9647
27 0.3760 −2.2906 3.1421 3.1424 45.6337 45.6331
29 0.1512 −1.1821 3.6269 3.6265 45.5441 45.5448
31 0.1250 0.0000 2.3578 2.3581 53.1572 53.1565

1=µ
t=50 t=0

u=0

u=0

0.9 0.3

0.3

x

y

1

1.5

Figure 9. Geometry and boundary conditions of a sudden contraction pipe flow.

7.3. Sudden contraction pipe flow

The third example is a 2D pipe flow with a sudden contraction part (Figure 9). The fluid with the
property of �= 1 and �= 1 is subjected to a pressure of p= 50 on the left end and is pressure free
on the right end. The pipe is approximated using 202 linear boundary elements with 202 boundary
nodes and 1780 internal cells with 1680 internal nodes (Figure 10). The boundary conditions
applied are tx = 50, ty = 0 on the left end, tx = ty = 0 on the right end and ux = uy = 0 on the
walls.

Figure 11 shows the computed horizontal velocity ux along the centreline (y = 0) of the pipe.
Figures 12–14 are the distribution of ux over three cross-sections specified by x = 0, 1.5 and
2.5, respectively. For the purpose of verification, this problem is also computed using the FEM
commercial software ANSYS, where a very fine mesh with 12 000 quadrilateral elements and
12 291 nodes is used and pressure boundary conditions are applied on the two ends. The ANSYS
results are also shown in Figures 11–14. Figures 15 and 16 are the streamline plots for the ANSYS
and the current BEM results.

From Figures 11–14, it can be seen that the BEM results are close to the results by ANSYS with
a modest accuracy. The discrepancy between the results of two methods is gradually increased
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Figure 10. BEM mesh for the sudden contraction pipe flow.
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Figure 11. Horizontal velocity along the centreline of the pipe.
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Figure 12. Horizontal velocity distribution on the left end.
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Figure 13. Horizontal velocity distribution over the shoulder section.
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Figure 14. Horizontal velocity distribution on the right end.

Figure 15. Streamline drawn using ANSYS results.

from right end to left end. This phenomenon is mainly due to the application of the pressure
boundary conditions on the left end. In the current BEM analysis, the traction boundary condition
is used, while in ANASYS computation the pressure condition is applied. As discussed in the
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Figure 16. Streamline drawn using the current BEM results.

Table II. Computational time in different stages (minutes).

Method Number Time for Time for Time for Total
of of evaluation forming solving times

Example computation iterations of integrals system system (minutes)

Cavity CVDM 29 3 4 10 17
Current 28 2 4 10 16

3D pipe CVDM 17 86 43 92 221
Current 17 40 43 91 174

Contraction ANSYS 2500 — — — 14
pipe Current 12 2 5 12 19

previous example, the normal traction is usually not equal to the pressure of the boundary. In fact,
the boundary effect can be clearly identified at the left end of the streamline plots (Figures 15
and 16). The ANSYS plot has no vertical velocity, but the BEM plot does since no velocity
constraint is applied to the left end of the BEM model.

7.4. Computational time

All the examples presented above were computed on a PC computer (2GHz, 256Mb RAM). The
computational time has been recorded for three periods [2]. The first period is from the beginning
to end of the evaluation of all boundary and domain integrals. The second period refers to the
forming of all matrices of system equations. And the last period is the time spent in solving the
system of equations. Table II lists the computational time for the three examples described above.

Comparison of the computational times spent by CVDM and the current method in Table II
shows that considerable computational time for evaluating integrals can be saved by using the
current method than using CVDM, especially for 3D problems. The times listed in the fourth
column of Table II consist of evaluating both the velocity integrals and velocity gradient integrals
since they are computed simultaneously in the current code. If only velocity gradient integrals
are computed, half and two-thirds of computational times for 2D and 3D problems, respectively,
are expected to be saved by using the current method than by using CVDM. On the other hand,
comparison between the current method and ANSYS in Table II shows that the BEM computation
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seems more time consuming than the FEM. This might be due to that the current BEM program
was not focused on the improvement of saving computational time.

8. CONCLUDING REMARKS

A new boundary-domain integral equation for computing velocity gradients has been derived for
2D and 3D viscous flows. Full fundamental solutions for both velocity and velocity gradient
integral equations are given, which show that the fundamental solutions in elasticity BEM can be
reduced to ones in viscous fluid mechanics by setting the shear modulus G to the viscosity � and
Poisson’s ratio � to −1.

The derived formulation is general, applicable to steady, unsteady, compressible, and incom-
pressible flows. Three numerical examples for steady incompressible flows have demonstrated the
correctness of the derived formulations.
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